How to enable a Windows application in WINE to access a Samba share on a NAS (continued)

In a 2016 post ‘How to enable a Windows application in WINE to access a Samba share on a NAS‘ I explained how to mount in Linux a networked SMB shared folder so that a Windows application running via WINE could access the folder as Drive Y: in order to open and save files in it. In that blog post I also listed a couple of Bash scripts to facilitate the mounting and unmounting of the SMB share for the WINEPREFIX used for the Windows application (~/.wine-pdfxve6 in the example I gave for PDF-XChange Editor, Version 6). However, as I have several Windows applications running via WINE on my machines, and I have used a different WINEPREFIX for each of them, I wanted to be able to mount the SMB share for whichever of those applications I happen to be using at the time. Therefore I modified the original Bash scripts as shown below. The Desktop Configuration files (.desktop files) to launch the scripts are essentially the same as in my earlier blog post; I have just removed the references to the specific Windows application. The four modified files are listed below. Obviously change the username, SMB share name and SMB server name to suit your own situation.

1. Bash script ~/mount_bsfnas1_brianfolder_share.sh

#!/bin/bash
mount_share () {
    echo
    echo "Enter your Linux account password below..."
    echo
    sudo ln -s /media/bsfnas1/brianfolder ~/$PREFIX/dosdevices/y:
    sudo mount.cifs //bsfnas1/brianfolder/ -o user=brianfolder,pass=enricocaruso,uid=$(id -u),gid=$(id -g) ~/$PREFIX/dosdevices/y:
}
echo
echo "This will mount the Samba share folder brianfolder on the bsfnas1 machine."
echo
echo
echo "== Select which WINEPREFIX you wish to use =="
echo
ls ~/.wine-* | grep .wine | awk -F'/' '{print NR " " substr($4, 1, length($4)-1)}'
NUMPREFIXES=$(ls ~/.wine-* | grep .wine | wc -l)
echo
read -p "Enter number (q to abort) and press ENTER: " CHOICE
if [ "$CHOICE" != "q" ] && [ "$CHOICE" -gt 0 ] && [ "$CHOICE" -le $NUMPREFIXES ]; then
    PREFIX=$(ls ~/.wine-* | grep .wine | awk -F'/' '{print NR " " substr($4, 1, length($4)-1)}' | grep "$CHOICE " | awk -F' ' '{print $2}')
    echo
    if [ ! -e ~/$PREFIX/dosdevices/y: ]; then
        mount_share
    else
        echo -n "~/$PREFIX/dosdevices/y: already exists. Is it OK to proceed anyway (y/n)? "
        read ANSWER
        if [ $ANSWER = "y" ]; then
            rm ~/$PREFIX/dosdevices/y:
            mount_share
        fi
    fi
    echo
fi
if grep -q "/media/bsfnas1/brianfolder" /proc/mounts; then
    echo "Samba share //bsfnas1/brianfolder is mounted for WINEPREFIX ~/$PREFIX ."
else
    echo "Samba share //bsfnas1/brianfolder is not mounted."
fi
echo
echo "You may now close this window."
read ANSWER
exit

2. Bash script ~/umount_bsfnas1_brianfolder_share.sh

#!/bin/bash
echo
echo "This will unmount the Samba share folder brianfolder on the bsfnas1 machine."
echo
echo "Enter your Linux account password below..."
echo
sudo umount ~/.wine-*/dosdevices/y: 2>/dev/null
echo
if grep -q "/media/bsfnas1/brianfolder" /proc/mounts; then
  echo "Samba share //bsfnas1/brianfolder is mounted."
else
  echo "Samba share //bsfnas1/brianfolder is not mounted."
fi
echo
echo "You may now close this window."
exit

3. Desktop Configuration file ~/Desktop/mount_bsfnas1_brianfolder_share.desktop

[Desktop Entry]
Comment[en_GB]=Mount bsfnas1 brianfolder share for current WINEPREFIX
Comment=Mount bsfnas1 brianfolder share for current WINEPREFIX
Exec=sh /home/fitzcarraldo/mount_bsfnas1_brianfolder_share.sh
GenericName[en_GB]=Mount bsfnas1 brianfolder share for current WINEPREFIX
GenericName=Mount bsfnas1 brianfolder share for current WINEPREFIX
Icon=media-mount
MimeType=
Name[en_GB]=mount_bsfnas1_brianfolder_share
Name=mount_bsfnas1_brianfolder_share
Path=
StartupNotify=true
Terminal=true
TerminalOptions=\s--noclose
Type=Application
X-DBUS-ServiceName=
X-DBUS-StartupType=none
X-KDE-SubstituteUID=false
X-KDE-Username=fitzcarraldo

4. Desktop Configuration file ~/Desktop/umount_bsfnas1_brianfolder_share.desktop

[Desktop Entry]
Comment[en_GB]=Unmount bsfnas1 brianfolder share for current WINEPREFIX
Comment=Unmount bsfnas1 brianfolder share for current WINEPREFIX
Exec=sh /home/fitzcarraldo/umount_bsfnas1_brianfolder_share.sh
GenericName[en_GB]=Unmount bsfnas1 brianfolder share for current WINEPREFIX
GenericName=Unmount bsfnas1 brianfolder share for current WINEPREFIX
Icon=media-eject
MimeType=
Name[en_GB]=umount_bsfnas1_brianfolder_share
Name=umount_bsfnas1_brianfolder_share
Path=
StartupNotify=true
Terminal=true
TerminalOptions=\s--noclose
Type=Application
X-DBUS-ServiceName=
X-DBUS-StartupType=none
X-KDE-SubstituteUID=false
X-KDE-Username=fitzcarraldo

Now when I double-click on the icon to mount the SMB share for a Windows application running via WINE, a terminal window pops up displaying the WINEPREFIXs currently installed on my machine:


This will mount the Samba share folder brianfolder on the bsfnas1 machine.


== Select which WINEPREFIX you wish to use ==

1 .wine-3dimviewer
2 .wine-myphoneexplorer
3 .wine-nbtscan
4 .wine-pdfxve6
5 .wine-PortableApps
6 .wine-radiant
7 .wine-symmetry
8 .wine-visio
9 .wine-xnviewmp

Enter number (q to abort) and press ENTER: 

Let’s say I want to use the Windows application XnViewMP. I would enter ‘9’ and press ‘Enter’. The rest of the interaction should be obvious:


This will mount the Samba share folder brianfolder on the bsfnas1 machine.


== Select which WINEPREFIX you wish to use ==

1 .wine-3dimviewer
2 .wine-myphoneexplorer
3 .wine-nbtscan
4 .wine-pdfxve6
5 .wine-PortableApps
6 .wine-radiant
7 .wine-symmetry
8 .wine-visio
9 .wine-xnviewmp

Enter number (q to abort) and press ENTER: 9

~/.wine-xnviewmp/dosdevices/y: already exists. Is it OK to proceed anyway (y/n)? y

Enter your Linux account password below...

[sudo] password for fitzcarraldo: 

Samba share //bsfnas1/brianfolder is mounted for WINEPREFIX ~/.wine-xnviewmp .

You may now close this window.

Henceforth the Windows application XnViewMP will be able to access the Y: drive which is actually the SMB share //bsfnas1/brianfolder.

Once I have finished using the application, I just double-click on the the icon to unmount the SMB share, and a terminal window pops up displaying the following:


This will unmount the Samba share folder brianfolder on the bsfnas1 machine.

Enter your Linux account password below...

[sudo] password for fitzcarraldo: 

Samba share //bsfnas1/brianfolder is not mounted.

You may now close this window.

Once I have entered my Linux password for the local machine, the script will unmount the SMB share and the terminal window will close automatically if you have configured the Desktop Configuration file by right-clicking on the icon and unticking ‘Do not close when command exits’ in KDE, ‘Keep terminal window open after command execution’ in LXDE, or similar in other desktop environments.

Note: If you use Microsoft Office via WINE, you also might be interested in a comment on my earlier blog post about a Microsoft Office problem in saving files to a remote SMB share.

Creating a RAID of USB pendrives in Linux

USB hub and USB pendrives used as RAID10 with my laptop

USB hub and pendrives used as RAID10 with my laptop.

If you’re not familiar with the RAID (Redundant Array of Inexpensive Disks) concept and the different types of array, the article ‘RAID 0, RAID 1, RAID 5, RAID 10 Explained with Diagrams‘ gives a quick summary (and links to another article ‘RAID 2, RAID 3, RAID 4, RAID 6 Explained with Diagram‘). Another helpful article is ‘RAID Levels Explained‘.

A few years ago I came across a YouTube video by a Mac user, titled ‘Use a bunch of USB Flash drives in a RAID array‘. Purely out of interest he had experimented with creating RAIDs using USB pendrives (also known as ‘USB flash drives’ or ‘USB memory sticks’). The creation of a RAID using USB pendrives for his Apple Macs was very easy, and, since then, I had wanted to try this using one of my laptops running Linux, just to satisfy my curiosity. I have previously created software RAIDs in a Linux server using internal 3.5-inch HDDs, for the root, home and swap partitions, and for file storage partitions for a Cloud server and NAS. However, I had never created a RAID using external USB drives. This week I happened to have a spare four-port USB 3.0 hub and four old 4GB USB 2.0 pendrives, so I finally got the chance to create a RAID with USB pendrives (see photo). I decided to use my main laptop, which has Gentoo Linux with OpenRC, elogind, eudev and KDE installed. That installation does not have an initramfs so I did not need to rebuild an initramfs to assemble the RAID. Anyway, early assembly of a RAID by an initramfs would only be needed if the RAID were being used to hold the directories required by the OS (the root partition, for example). As my RAID would be pluggable external storage, I wanted to mount it manually rather than adding it to /etc/fstab to be mounted automatically at boot. As I had not used a RAID on this laptop before, I had not enabled the RAID drivers in the kernel configuration, so I needed to do that and rebuild the kernel. I opted to make the RAID drivers kernel modules rather than built into the kernel, so that I could load only the relevant module for whichever type of RAID I wished to create.

I had to decide which filesystem to use in the RAID. I have always used ext4 in my RAIDs using HDDs. However, F2FS is an interesting filesystem developed by Samsung for devices using flash memory, such as SD cards, USB pendrives and SSDs. So I decided to format the pendrives to use F2FS, and create an F2FS RAID. As I had not used F2FS previously on this laptop, I had not enabled the F2FS driver in the kernel configuration, so I enabled the F2FS driver in the kernel at the same time as I enabled the RAID drivers. As with the RAID drivers, I opted to make the F2FS driver a kernel module rather than built into the kernel, so that I could load it and unload it whenever I wanted.

Not only did it turn out to be easy to create a RAID using USB pendrives, I found that the Linux RAID module gets loaded automatically when I connect the USB hub. Furthermore the RAID is recognised by KDE and listed under ‘Places’ in the Dolphin file manager’s windows, which I can click on to mount and unmount the RAID. So I did not even need to configure the OS to load the RAID module at boot (the OS does not load the module automatically at boot if the hub is not connected).

DigitalOcean produced a good tutorial on creating RAIDs in Ubuntu: ‘How To Create RAID Arrays with mdadm on Ubuntu 16.04‘. The procedure is essentially the same in Gentoo Linux, the only differences being the path of the mdadm.conf file and the method of updating an initramfs (which I did not need to do anyway in this particular installation).

As I had four spare USB pendrives and a four-port hub, I decided to create a RAID10 array. Below is a summary of the steps I took.

1. I rebuilt the kernel in order to build the RAID and F2FS modules. The relevant kernel configuration parameters I set are shown below:

root # grep RAID /usr/src/linux/.config | grep -v "#"
CONFIG_MD_RAID0=m
CONFIG_MD_RAID1=m
CONFIG_MD_RAID10=m
CONFIG_MD_RAID456=m
CONFIG_ASYNC_RAID6_RECOV=m
CONFIG_RAID6_PQ=m
root # grep F2FS /usr/src/linux/.config | grep -v "#"
CONFIG_F2FS_FS=m
CONFIG_F2FS_STAT_FS=y
CONFIG_F2FS_FS_XATTR=y
CONFIG_F2FS_FS_POSIX_ACL=y
root # uname -a
Linux clevow230ss 4.19.72-gentoo #2 SMP Tue Oct 15 01:36:57 BST 2019 x86_64 Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz GenuineIntel GNU/Linux

2. I installed the mdadm tool:

root # eix -I mdadm
[I] sys-fs/mdadm
     Available versions:  4.1^t {static}
     Installed versions:  4.1^t(01:52:17 15/10/19)(-static)
     Homepage:            https://git.kernel.org/pub/scm/utils/mdadm/mdadm.git/
     Description:         Tool for running RAID systems - replacement for the raidtools

3. I installed the F2FS tools:

root # eix -I f2fs
[I] sys-fs/f2fs-tools
     Available versions:  1.10.0(0/4) 1.11.0-r1(0/5) 1.12.0-r1(0/6) ~1.13.0(0/6) {selinux}
     Installed versions:  1.12.0-r1(0/6)(02:05:17 15/10/19)(-selinux)
     Homepage:            https://git.kernel.org/cgit/linux/kernel/git/jaegeuk/f2fs-tools.git/about/
     Description:         Tools for Flash-Friendly File System (F2FS)

4. I rebooted the laptop.

5. The f2fs module was not loaded automatically, therefore I loaded it manually and edited /etc/conf.d/modules to add the module name so that it would be loaded automatically in future:

root # modprobe f2fs
root # lsmod | grep f2fs
f2fs                  466944  0
root # nano /etc/conf.d/modules
root # grep ^modules /etc/conf.d/modules
modules="fuse bnep rfcomm hidp uvcvideo cifs mmc_block snd-seq-midi iptable_raw xt_CT uinput f2fs"

6. I plugged the four USB pendrives into the USB hub, and connected the hub to the laptop.

7. I launched GParted, deleted the existing partition on each pendrive (three had been formatted as FAT32, one as exFAT), reformatted them individually as F2FS and gave them each a label (USBPD01 to USBPD04). I could have done all that from the command line but it is easier using GParted, and I like an easy life.

Note that the mdadm USE flag in Gentoo Linux needed to be set when GParted was merged, so GParted would need to be re-merged with USE="mdadm" if that is not the case. Furthermore, GParted will only include F2FS in the list of available filesystems if either the F2FS module is loaded or the F2FS driver has been built into the kernel.

8. I ascertained the names of the USB pendrives:

root # lsblk -o NAME,SIZE,FSTYPE,TYPE,MOUNTPOINT
NAME     SIZE FSTYPE TYPE MOUNTPOINT
sda    698.7G        disk
├─sda1   128M ext2   part
├─sda2    16G swap   part [SWAP]
├─sda5   128G ext4   part /
├─sda6   256G ext4   part /home
└─sda7 298.5G ntfs   part /media/NTFS
sdb      3.8G        disk
└─sdb1   3.8G f2fs   part
sdc      3.8G        disk
└─sdc1   3.8G f2fs   part
sdd      3.8G        disk
└─sdd1   3.8G f2fs   part
sde      3.8G        disk
└─sde1   3.8G f2fs   part

As you can see above, the four USB pendrives are sdb to sde.

9. I loaded the raid10 module:

root # modprobe raid10
root # lsmod | grep raid
raid10                 57344  1

10. I created the RAID10 array:

root # mdadm --create --verbose /dev/md0 --level=10 --raid-devices=4 /dev/sdb /dev/sdc /dev/sdd /dev/sde
mdadm: layout defaults to n2
mdadm: layout defaults to n2
mdadm: chunk size defaults to 512K
mdadm: partition table exists on /dev/sdb
mdadm: partition table exists on /dev/sdb but will be lost or
       meaningless after creating array
mdadm: partition table exists on /dev/sdc
mdadm: partition table exists on /dev/sdc but will be lost or
       meaningless after creating array
mdadm: partition table exists on /dev/sdd
mdadm: partition table exists on /dev/sdd but will be lost or
       meaningless after creating array
mdadm: partition table exists on /dev/sde
mdadm: partition table exists on /dev/sde but will be lost or
       meaningless after creating array
mdadm: size set to 3913728K
Continue creating array? y
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.

It takes a while for the RAID to be created, so I checked progress periodically as follows:

root # cat /proc/mdstat
Personalities : [raid10]
md0 : active raid10 sde[3] sdd[2] sdc[1] sdb[0]
      7827456 blocks super 1.2 512K chunks 2 near-copies [4/4] [UUUU]
      [>....................]  resync =  2.8% (222272/7827456) finish=23.8min speed=5308K/sec
      
unused devices: <none>
root # cat /proc/mdstat
Personalities : [raid10]
md0 : active raid10 sde[3] sdd[2] sdc[1] sdb[0]
      7827456 blocks super 1.2 512K chunks 2 near-copies [4/4] [UUUU]
      [========>............]  resync = 44.0% (3449856/7827456) finish=12.9min speed=5637K/sec
      
unused devices: <none>
root # cat /proc/mdstat
Personalities : [raid10]
md0 : active raid10 sde[3] sdd[2] sdc[1] sdb[0]
      7827456 blocks super 1.2 512K chunks 2 near-copies [4/4] [UUUU]
      [==============>......]  resync = 74.0% (5797760/7827456) finish=5.9min speed=5698K/sec
      
unused devices: <none>
root # cat /proc/mdstat
Personalities : [raid10]
md0 : active raid10 sde[3] sdd[2] sdc[1] sdb[0]
      7827456 blocks super 1.2 512K chunks 2 near-copies [4/4] [UUUU]
      
unused devices: <none>

11. I formatted the RAID:

root # sudo mkfs.f2fs -f /dev/md0

        F2FS-tools: mkfs.f2fs Ver: 1.12.0 (2018-11-12)

Info: Disable heap-based policy
Info: Debug level = 0
Info: Trim is enabled
Info: Segments per section = 1
Info: Sections per zone = 1
Info: sector size = 512
Info: total sectors = 15654912 (7644 MB)
Info: zone aligned segment0 blkaddr: 512
Info: format version with
  "Linux version 4.19.72-gentoo (root@clevow230ss) (gcc version 8.3.0 (Gentoo 8.3.0-r1 p1.1)) #2 SMP Tue Oct 15 01:36:57 BST 2019"
Info: [/dev/md0] Discarding device
Info: This device doesn't support BLKSECDISCARD
Info: This device doesn't support BLKDISCARD
Info: Overprovision ratio = 2.300%
Info: Overprovision segments = 179 (GC reserved = 94)
Info: format successful

The option ‘-f‘ forces mkfs to overwrite any existing filesystem. (I believe the same option is ‘-F‘ in Ubuntu, rather than ‘-f‘.)

12. I created a mount point so I could mount the RAID from the command line if I wanted:

root # mkdir -p /mnt/md0

13. I mounted the RAID from the command line and checked its size. In the case of RAID10 I would expect the size to be double the size of one of the formatted USB pendrives, i.e. approximtely 2 x 3.8GB = 7.6GB):

root # mount /dev/md0 /mnt/md0
root # df -h -x devtmpfs -x tmpfs
Filesystem      Size  Used Avail Use% Mounted on
/dev/root       126G   36G   84G  31% /
/dev/sda6       252G  137G  103G  57% /home
/dev/sda7       299G  257G   43G  86% /media/NTFS
/dev/md0        7.5G  419M  7.1G   6% /mnt/md0
root # blkid | grep -v sda
/dev/md0: UUID="d565c117-37e0-48eb-b635-a2fe70b83272" TYPE="f2fs"
/dev/sdb: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="45a488a0-5126-0b95-0c28-eb1f743f77c7" LABEL="clevow230ss:0" TYPE="linux_raid_member"
/dev/sdc: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="ef7de228-cf4d-c6bf-c74a-462a0e27f8bd" LABEL="clevow230ss:0" TYPE="linux_raid_member"
/dev/sdd: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="b5dd5c41-3ab2-fa38-bd28-0b965883775c" LABEL="clevow230ss:0" TYPE="linux_raid_member"
/dev/sde: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="16149e7e-5a96-ece6-65ba-25721bcee49f" LABEL="clevow230ss:0" TYPE="linux_raid_member"

So /dev/md0 looked correct.

14. I checked that nothing was already configured in mdadm.conf and added the array’s details to it:

root # grep -v "#" /etc/mdadm.conf
root # mdadm --detail --scan | sudo tee -a /etc/mdadm.conf
ARRAY /dev/md0 metadata=1.2 name=clevow230ss:0 UUID=d1288120:a1614809:3e89bb5f:967df69b
root # grep -v "#" /etc/mdadm.conf
ARRAY /dev/md0 metadata=1.2 name=clevow230ss:0 UUID=d1288120:a1614809:3e89bb5f:967df69b

15. As the RAID will have only a partition for file storage, and as the RAID array will not always be connected to the laptop, it does not need to be assembled automatically early during boot, so there is no need to add mdadm.conf to an initramfs (which this laptop does not have anyway) and no need to specify /dev/md0 in /etc/fstab to be mounted at boot.

16. I left the USB hub connected to the laptop and rebooted.

17. I checked that the modules were loaded at boot:

root # lsmod | grep raid
raid10                 57344  1
root # lsmod | grep f2fs
f2fs                  466944  0

18. I checked that the RAID had been assembled correctly at boot:

root # blkid | grep -v sda
/dev/sdb: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="45a488a0-5126-0b95-0c28-eb1f743f77c7" LABEL="clevow230ss:0" TYPE="linux_raid_member"
/dev/sdc: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="ef7de228-cf4d-c6bf-c74a-462a0e27f8bd" LABEL="clevow230ss:0" TYPE="linux_raid_member"
/dev/sdd: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="b5dd5c41-3ab2-fa38-bd28-0b965883775c" LABEL="clevow230ss:0" TYPE="linux_raid_member"
/dev/md0: UUID="d565c117-37e0-48eb-b635-a2fe70b83272" TYPE="f2fs"
/dev/sde: UUID="d1288120-a161-4809-3e89-bb5f967df69b" UUID_SUB="16149e7e-5a96-ece6-65ba-25721bcee49f" LABEL="clevow230ss:0" TYPE="linux_raid_member"

19. I rebooted a few times with and without the USB hub connected. The module raid10 only gets loaded if the USB hub is connected. If I reboot without the hub connected, raid10 is no longer loaded automatically at boot. If I plug in the hub after the laptop has booted, raid10 gets loaded and the RAID array is recognised by the OS.

20. I mounted the RAID from the command line and copied a file to it as root user:

root # mount /dev/md0 /mnt/md0
root # ls -la /mnt/md0
total 8
drwxr-xr-x 2 root root 4096 Oct 15 07:40 .
drwxr-xr-x 7 root root 4096 Oct 15 07:42 ..
root # cp ./Paper_sheet_sizes.png /mnt/md0
root # ls -la /mnt/md0
total 268
drwxr-xr-x 2 root root   4096 Oct 15 08:07 .
drwxr-xr-x 7 root root   4096 Oct 15 07:42 ..
-rw-r--r-- 1 root root 265760 Oct 15 08:07 Paper_sheet_sizes.png
root # umount /dev/md0
root # ls -la /mnt/md0
total 8
drwxr-xr-x 2 root root 4096 Oct 15 07:42 .
drwxr-xr-x 7 root root 4096 Oct 15 07:42 ..

However, /mnt/md0/ is owned by the root user, so user fitzcarraldo cannot copy files into it. Therefore I changed the ownership:

root # mount /dev/md0 /mnt/md0
root # ls -la /mnt/
total 28
drwxr-xr-x  7 root root 4096 Oct 15 07:42 .
drwxr-xr-x 22 root root 4096 Oct  6 08:31 ..
-rw-r--r--  1 root root    0 Apr  9  2015 .keep
drwxr-xr-x  2 root root 4096 Apr 19  2015 cdrom
drwxr-xr-x  2 root root 4096 Jan 16  2017 floppy
drwxr-xr-x  2 root root 4096 Oct 15 08:07 md0
drwxr-xr-x  2 root root 4096 Apr 17  2015 pendrive
drwxr-xr-x  2 root root 4096 Mar 18  2016 usbstick
root # chown fitzcarraldo:fitzcarraldo /mnt/md0
root # ls -la /mnt/
total 28
drwxr-xr-x  7 root         root         4096 Oct 15 07:42 .
drwxr-xr-x 22 root         root         4096 Oct  6 08:31 ..
-rw-r--r--  1 root         root            0 Apr  9  2015 .keep
drwxr-xr-x  2 root         root         4096 Apr 19  2015 cdrom
drwxr-xr-x  2 root         root         4096 Jan 16  2017 floppy
drwxr-xr-x  2 fitzcarraldo fitzcarraldo 4096 Oct 15 08:07 md0
drwxr-xr-x  2 root         root         4096 Apr 17  2015 pendrive
drwxr-xr-x  2 root         root         4096 Mar 18  2016 usbstick
root # umount /dev/md0

21. ‘Places’ in Dolphin shows /mnt/md0 as ‘7.5 GiB Hard Drive’.

22. I can still mount the RAID from the command line:

root # mount /dev/md0 /mnt/md0
root # df -h /dev/md0
Filesystem      Size  Used Avail Use% Mounted on
/dev/md0        7.5G  420M  7.1G   6% /mnt/md0
root # umount /dev/md0

23. If I want to use the RAID in KDE I must use Dolphin to mount it, not mount it from the command line. To do this I click on the RAID ‘7.5 GiB Hard Drive’ listed under ‘Places’, and a window pop-ups prompting me to enter the root user’s password.

If I mount /dev/md0 via Dolphin instead of via the command line, KDE mounts it on a different directory:

root # df -h /run/media/fitzcarraldo/d565c117-37e0-48eb-b635-a2fe70b83272/
Filesystem      Size  Used Avail Use% Mounted on
/dev/md0        7.5G  420M  7.1G   6% /run/media/fitzcarraldo/d565c117-37e0-48eb-b635-a2fe70b83272

If I want to unmount it, I right-click on the RAID in ‘Places’ and select ‘Unmount’ in the right-click menu. Once it has been unmounted, I can unplug the hub from the laptop. If I plug the hub back into the laptop, the RAID is detected and can be mounted as usual.

So, it works! A USB hub and pendrives are a handy way to:

  • experiment with creating the various types of RAID;
  • compare the capacity of the RAID with the capacity of the USB pendrives used;
  • measure the time to write and read a large file to/from the RAID and compare those times with the time to write and read the same file to/from a single USB pendrive of the same model.

Firewall zones (profiles) in Linux, and how to switch them automatically if you use UFW

Firstly, a note on terminology: UFW (Uncomplicated Firewall) and its two GUI front-ends Gufw and UFW Frontends use the term ‘application profile’ to refer to a pre-configured set of rules specified in a file. Files containing UFW application profiles are placed in the directory /etc/ufw/applications.d/. An application profile for SMB, for example, enables the root user to use the UFW command ‘ufw allow Samba‘ (‘ufw allow CIFS‘ in Gentoo Linux) rather than having to enter UFW commands specifying the precise ports and network protocols that SMB uses. However, this blog post is not about UFW’s application profiles; it is about what Gufw calls ‘profiles’ and firewalld calls ‘zones’.

In essence a profile/zone is a collection of firewall policies and rules. Both Gufw and firewalld include the concept of a ‘zone’, although Gufw uses the term ‘profile’ rather than ‘zone’. UFW Frontends does not have the concept of a ‘zone’; rules entered via UFW Frontends apply to any network to which you connect your laptop. The ability to define different zones for different networks is handy. For example, you can have certain policies and rules when your laptop is connected to your home network, and different policies and rules when your laptop is connected to the network in a café, hotel, airport or other public place.

An attractive feature of firewalld when used in conjunction with NetworkManager and KDE Plasma is that it is possible to use the desktop environment’s network management module (‘System Settings’ > ‘Connections’) to specify a particular firewalld zone for a particular network connection. For example, let’s say you used firewalld to specify certain policies and rules for a zone you named ‘office’, and you then specified in the System Settings – Connections GUI that a connection named ‘ACM’ should use the zone ‘office’. Thereafter, whenever you connect your laptop to the network named ‘ACM’, firewalld will use the policies and rules you previously configured for the zone ‘office’.

Unlike firewalld, Gufw does not have the ability to switch profiles automatically according to which network the laptop is connected. You have to select manually the profile you wish to use. You would launch Gufw prior to connecting to, for example, your office’s network, select the profile ‘Office’ (or whatever you have named it), then connect your laptop to that network.

I think many people would be satisfied with the functionality currently provided by Gufw. I could use the Gufw GUI to create Gufw profiles with names such as ‘Home’, ‘HomeDave’, ‘Public’, ‘HQoffice’, ‘USoffice’, ‘PestanaRio’ and so on, and specify the different policies and rules I want for each profile. At home I would launch Gufw on my laptop and select the Home profile then connect to my home network; in the office at work I would launch Gufw on my laptop and select the HQoffice profile then connect to the office network; at my friend Dave’s house I would launch Gufw on my laptop and select the HomeDave profile then connect to the house network; and so on. Nevertheless I do see the attraction of automated zone switching, as provided by firewalld in conjunction with NetworkManager and KDE. It would be handy if my laptop could switch automatically to the Home profile when my laptop connected to the network at my home with the name ‘BTHub5-8EUQ’, automatically switch to the HQoffice profile when my laptop connected to the network named ‘HQ-Office2’ in the office, and so on.

I use UFW on my two laptops running Gentoo Linux. The package ufw-frontends is also installed but normally I use UFW directly via the command line. However I wanted to learn about zones/profiles while using UFW, and I also wanted to see if I could automate the switching of zones without resorting to installing firewalld. NetworkManager has the ability to launch ‘hook’ scripts when certain things happen — when a network connection changes, for example — and this seemed to me to be a way of switching profiles automatically.

I had not used Gufw before, so I decided to install it. A package is available in many Linux distributions but there is no ebuild for Gufw in Gentoo’s main Portage tree and I could not find an up-to-date ebuild for it in any Portage overlays. Therefore I created the ebuild for net-firewall/gufw-19.10.0 shown below. It probably needs improving, but it does install a working Gufw in Gentoo Linux.

# Copyright 1999-2019 Gentoo Foundation
# Distributed under the terms of the GNU General Public License v2
# $Header: $

EAPI=7
PYTHON_COMPAT=( python3_{5,6,7} )
DISTUTILS_IN_SOURCE_BUILD=1

inherit distutils-r1

MY_PN="gui-ufw"
MY_PV="$(ver_cut 1-2)"

DESCRIPTION="GUI frontend for managing ufw."
HOMEPAGE="https://gufw.org/"
SRC_URI="https://launchpad.net/${MY_PN}/trunk/${MY_PV}/+download/${MY_PN}-${PV}.tar.gz"

LICENSE="GPL-3"
SLOT="0"
KEYWORDS="~amd64"
IUSE=""

DEPEND="dev-python/python-distutils-extra"
RDEPEND="net-firewall/ufw
	dev-python/netifaces
	dev-python/pygobject:3
	net-libs/webkit-gtk[introspection]
	sys-auth/elogind
	sys-auth/polkit
	x11-libs/gtk+:3[introspection]
	x11-themes/gnome-icon-theme-symbolic
"
S=${WORKDIR}/${MY_PN}-${PV}

pkg_postinst() {
	sed '/dist-packages/d' -i /usr/bin/gufw-pkexec
	sed -E '/\/share\//d' -i /usr/bin/gufw-pkexec
	local PYTHONVERSION="$(python -c 'import sys; print("{}.{}".format(sys.version_info.major, sys.version_info.minor))')"
	sed -E "s|python3\.[0-9]|python${PYTHONVERSION}|g" -i /usr/bin/gufw-pkexec
	sed -E 's|\/lib\/|\/lib64\/|g' -i /usr/bin/gufw-pkexec
}

How To Set Up a Firewall with GUFW on Linux‘ is a good tutorial on Gufw.

As I had not used Gufw previously, I had to play around with it to understand better its functional design. I found that if I configure rules directly via UFW on the command line without using Gufw, Gufw does not allow me to edit those rules (but does allow me to delete them) and those rules exist whichever Gufw profile is selected in the Gufw GUI. Gufw profiles are stored in files named ‘/etc/gufw/*.profile‘ (e.g. /etc/gufw/Home.profile) and these files will not include UFW rules entered via the command line. On the other hand, UFW rules created via the Gufw GUI apply solely to the currently-selected Gufw profile, which is what I would have expected. In other words, I can create a different set of policies and rules in each Gufw profile. Therefore I believe Gufw profiles (as distinct from UFW application profiles) are basically analogous to firewalld’s zones. It also appears to me that Gufw maintains configuration files specifying policies and rules independently of UFW, which Gufw then applies to UFW. In other words, if you are a Gufw user you should not use UFW directly to configure policies and rules, otherwise Gufw’s configuration files will not include what you did directly using UFW. To reiterate, use only Gufw or only UFW, not both.

The current Gufw profile’s name is listed in the file /etc/gufw/gufw.cfg. For example, I currently have the Home profile selected in the Gufw GUI, and the file gufw.cfg contains the following:

[GufwConfiguration]
profile = Home
windowwidth = 542
windowheight = 530
confirmdetelerule = yes

If I examine the contents of the file /etc/gufw/Home.profle I see that it contains the UFW policies and rules I specified for the Gufw Home profile:

[fwBasic]
status = enabled
incoming = deny
outgoing = allow
routed = disabled

[Rule0]
ufw_rule = 137,138/udp ALLOW IN 192.168.1.0/24
description = Samba
command = /usr/sbin/ufw allow in proto udp from 192.168.1.0/24 to any port 137,138
policy = allow
direction = in
protocol = 
from_ip = 192.168.1.0/24
from_port = 
to_ip = 
to_port = 137,138/udp
iface = 
routed = 
logging = 

[Rule1]
ufw_rule = 139,445/tcp ALLOW IN 192.168.1.0/24
description = Samba
command = /usr/sbin/ufw allow in proto tcp from 192.168.1.0/24 to any port 139,445
policy = allow
direction = in
protocol = 
from_ip = 192.168.1.0/24
from_port = 
to_ip = 
to_port = 139,445/tcp
iface = 
routed = 
logging =

I also notice that the other Gufw profiles can differ. For example, my Office.profile file contains the following:

[fwBasic]
status = enabled
incoming = deny
outgoing = allow
routed = allow

The profile name listed in gufw.cfg gets changed when the user changes the profile using the Gufw GUI. It appears to me that only at the point in time when the user selects a certain Gufw profile in the Gufw GUI does Gufw parse the applicable *.profile file and issue commands to UFW to implement the policies and rules specified in the *.profile file.

Initially I tried to automate the process of changing the Gufw profile by doing the following:

  1. I created a NetworkManager Dispatcher hook script to:

    1. detect when the laptop connects to a network;

    2. determine whether the network is at my home, at my workplace or in a public place (café, airport or wherever) by looking at the connection name;

    3. edit gufw.cfg to change the name of the Gufw profile according to the network connected.
  2. I configured KDE to launch Gufw automatically at login, hoping that would implement the Gufw profile specified in gufw.cfg.

When I connected the laptop to various networks, Gufw did indeed show the name of the profile selected by the NetworkManager Dispatcher hook script, but the associated Gufw profile’s rules had not been applied. They were only applied if I clicked on the ‘Profile’ pull-down menu in Gufw, selected a different Gufw profile, then re-selected the desired Gufw profile. Therefore driving Gufw from a NetworkManager Dispatcher hook script is not possible. This is a pity, as Gufw is an easy way to manage UFW from a GUI; it allows the user to create, delete and edit zones (Gufw profiles) and to select them manually. What Gufw doesn’t do is enable the user to associate those zones with connection names, nor trigger specific zone automatically based on the selected network connection. firewalld, on the other hand, does enable the user to do both those things.

As my attempt at automating the switching of zones in Gufw had failed, I decided to create a NetworkManager Dispatcher hook script to switch zones automatically by using UFW commands. Initially I though about creating a bespoke UFW application profile for each zone and allowing/denying those in the script, but it is actually easier to use the fundamental UFW commands in the script, especially as UFW commands are relatively easy to understand. Also, this approach means everything is in a single file, which facilitates configuration. I can simply edit the script in order to: a) add or delete a zone; b) change a zone’s name; c) change policies and rules for a zone; d) add or delete a connection; e) change the name of a connection; f) change the zone a connection uses. Granted, editing a script is not as user-friendly as using the firewalld GUI to configure a zone and then using KDE Plasma’s system settings module Connections to specify that zone for a specific connection, but my script is not particularly difficult to understand and edit. And by using such a script I can continue to use UFW rather than installing firewalld and having to learn how to use it.

My NetworkManager Dispatcher hook script /etc/NetworkManager/dispatcher.d/20_ufw-zones is listed below. In the main body of the script I define the zone I wish to use for each connection, and in the function select_zone I define the policies and rules I want each zone to use.

#!/bin/bash
INTERFACE=$1
STATUS=$2
WIRED=enp4s0f1
WIFI=wlp3s0

CT_helper_rule() {
    echo "# The following is needed to enable Samba commands to" >> /etc/ufw/before.rules
    echo "# work properly for broadcast NetBIOS name resolution" >> /etc/ufw/before.rules
    echo "#"  >> /etc/ufw/before.rules
    echo "# raw table rules" >> /etc/ufw/before.rules
    echo "*raw" >> /etc/ufw/before.rules
    echo ":OUTPUT ACCEPT [0:0]" >> /etc/ufw/before.rules
    echo "-F OUTPUT" >> /etc/ufw/before.rules
    echo "-A OUTPUT -p udp -m udp --dport 137 -j CT --helper netbios-ns" >> /etc/ufw/before.rules
    echo "COMMIT" >> /etc/ufw/before.rules
}
 
select_zone() {
    ufw --force reset
    ufw --force enable
    ZONE=$1
    case "$ZONE" in
    'Home')
        ufw default deny incoming
        ufw default allow outgoing
        #
        # Rules for SMB
        ufw allow from 192.168.1.0/24 to any port 137,138 proto udp
        ufw allow from 192.168.1.0/24 to any port 139,445 proto tcp
        CT_helper_rule
        #
        # Rules for KDEConnect
        ufw allow from 192.168.1.0/24 to any port 1714:1764 proto udp
        ufw allow from 192.168.1.0/24 to any port 1714:1764 proto tcp
    ;;
    'Office')
        ufw default deny incoming
        ufw default allow outgoing
    ;;
    'Public')
        ufw default reject incoming
        ufw default allow outgoing
    ;;
    'JohnsHouse')
        ufw default deny incoming
        ufw default allow outgoing
        #
        # Rules for SMB
        ufw allow from 192.168.42.0/24 to any port 137,138 proto udp
        ufw allow from 192.168.42.0/24 to any port 139,445 proto tcp
        CT_helper_rule
        #
        # Rules for KDEConnect
        ufw allow from 192.168.42.0/24 to any port 1714:1764 proto udp
        ufw allow from 192.168.42.0/24 to any port 1714:1764 proto tcp
    ;;
    esac
    ufw --force reload
    rm /etc/ufw/*.rules.20* # Delete backups of *.rules files ufw makes every time it is reset
    echo -n `date +"[%F %T %Z]"` >> /var/log/ufw-zones.log
    echo " Zone $ZONE selected for connection $ACTIVE on interface $INTERFACE." >> /var/log/ufw-zones.log
}
 
# Check if either the wired or wireless interface is up
if [ "$INTERFACE" = "$WIRED" -o "$INTERFACE" = "$WIFI" ] && [ "$STATUS" = "up" ]; then
 
    # Check if a single connection is active
    if [ `nmcli c | grep -v "\-\-" | grep -v "NAME.*UUID.*TYPE.*DEVICE" | wc -l` -eq 1 ]; then
 
        # Ascertain the name of the active connection
        ACTIVE=`nmcli c | grep -v "\-\-" | grep -v "NAME.*UUID.*TYPE.*DEVICE" | awk -F' ' '{print $1}'`
 
        case "$ACTIVE" in
 
        'eth0')
            ZONE="Home"
        ;;
        'POR1-wired')
            ZONE="Office"
        ;;
        'BTHub5-8EUQ')
            ZONE="Home"
        ;;
        'BTHub5-8EUQ-5GHz')
            ZONE="Home"
        ;;
        'John1')
            ZONE="JohnsHouse"
        ;;
        'GRAND MERCURE')
            ZONE="Public"
        ;;
        *)
            # If connection name is not in above list
            ZONE="Public"
        ;;

        esac

        select_zone $ZONE
        exit $?

    fi
fi

The log file that the script uses contains a chronological record of the connections made and the zones selected:

$ cat /var/log/ufw-zones.log 
[2019-09-30 20:13:52 BST] Zone Home selected for connection eth0 on interface enp4s0f1.
[2019-10-01 22:59:18 BST] Zone Home selected for connection BTHub5-8EUQ-5GHz on interface wlp3s0.
[2019-10-02 17:59:23 EDT] Zone Public selected for connection loganwifi on interface wlp3s0.
[2019-10-03 10:12:46 EDT] Zone Office selected for connection POR1-wired on interface enp4s0f1.